Clamping Variables and Approximate Inference
نویسندگان
چکیده
It was recently proved using graph covers (Ruozzi, 2012) that the Bethe partition function is upper bounded by the true partition function for a binary pairwise model that is attractive. Here we provide a new, arguably simpler proof from first principles. We make use of the idea of clamping a variable to a particular value. For an attractive model, we show that summing over the Bethe partition functions for each sub-model obtained after clamping any variable can only raise (and hence improve) the approximation. In fact, we derive a stronger result that may have other useful implications. Repeatedly clamping until we obtain a model with no cycles, where the Bethe approximation is exact, yields the result. We also provide a related lower bound on a broad class of approximate partition functions of general pairwise multi-label models that depends only on the topology. We demonstrate that clamping a few wisely chosen variables can be of practical value by dramatically reducing approximation error.
منابع مشابه
Clamping Improves TRW and Mean Field Approximations
We examine the effect of clamping variables for approximate inference in undirected graphical models with pairwise relationships and discrete variables. For any number of variable labels, we demonstrate that clamping and summing approximate sub-partition functions can lead only to a decrease in the partition function estimate for TRW, and an increase for the naive mean field method, in each cas...
متن کاملImproving Optimization-Based Approximate Inference by Clamping Variables
While central to the application of probabilistic models to discrete data, the problem of marginal inference is in general intractable and efficient approximation schemes need to exploit the problem structure. Recently, there have been efforts to develop inference techniques that do not necessarily make factorization assumptions about the distribution, but rather exploit the fact that sometimes...
متن کاملEfficient Sequential Clamping for Lifted Message Passing
Lifted message passing approaches can be extremely fast at computing approximate marginal probability distributions over single variables and neighboring ones in the underlying graphical model. They do, however, not prescribe a way to solve more complex inference tasks such as computing joint marginals for k-tuples of distant random variables or satisfying assignments of CNFs. A popular solutio...
متن کاملInference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution
In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...
متن کاملChoosing a Variable to Clamp: Approximate Inference Using Conditioned Belief Propagation
In this paper we propose an algorithm for approximate inference on graphical models based on belief propagation (BP). Our algorithm is an approximate version of Cutset Conditioning, in which a subset of variables is instantiated to make the rest of the graph singly connected. We relax the constraint of single-connectedness, and select variables one at a time for conditioning, running belief pro...
متن کامل